Linearachsen für die Spritzgusstechnik

Linearachsen für die Spritzgusstechnik

Auf Eigenentwicklung gesetzt

Je nach Einsatzfall können Standardroboter zur Entnahme von Spritzgussteilen durchaus teurer und weniger flexibel sein als Eigenentwicklungen. So ist es auch beim folgenden Beispiel eines Herstellers von Kunststoffteilen, der in der Folge die kartesischen Roboter unter Zuhilfenahme von modernen Linearachsen selbst baut.

Stone Plastics baut im eigenen Haus kundenspezifisch anpassbare kartesische Roboter für die Herstellung von Kunststoffteilen. (Bild: Rollon GmbH)

Das Unternehmen Stone Plastics baut im eigenen Haus kundenspezifisch anpassbare kartesische Roboter für die Herstellung von Kunststoffteilen. So kann das Unternehmen die Kosten besser steuern und überwachen und mehr Branchen bedienen. Für die linearen Bewegungen der Roboter kommen Linearachsen von Rollon zum Einsatz, die bei der Entnahme von Kunststoffteilen aus den Spritzgussformen eine wichtige Rolle spielen.

Kundenspezifische Roboter

Stone Plastics betreibt 68 Spritzgussmaschinen mit Größen von 22 bis 1.000t, die hauptsächlich für Produkte der Automobil- und Verbrauchsgüterindustrie eingesetzt werden. Dazu kommen rund 800 verschiedene Formen mit jeweils bis zu 16 Kavitäten. Die hauseigenen Dreiachsroboter entnehmen die Kunststoffteile mit Saugerwerkzeugen aus den Formen und legen sie auf einem Förderband ab. Die durchschnittlichen Zykluszeiten liegen dabei zwischen 10 und 30s, je nach Anwendung.

Flächeneffizienz intelligent erhöht

Durch den Einsatz eigener Entwicklungen kann Stone Plastics seine Produktionsflächen effizienter nutzen. So können die Teile am Ende der Presse anstatt an der Seite entnommen werden – die Pressen können näher zusammenrücken. Außerdem lassen sich die Bedienplätze für mehrere Pressen eng beieinander anordnen, um das Material direkt am Gang effizient zu handhaben. Da Ausfallzeiten sehr kostenträchtig sind, benötigt das Unternehmen zuverlässige Linearachsen und setzt heute drei verschiedene Modelle von Rollon bei den Robotern ein: @Aufzählung:R-Smart 160 SP6 für die X-Achse, @Aufzählung:R-Smart 120 SP4 für die Y-Achse, @Aufzählung:S-Smart 65 SP für die Z-Achse.

Die X- und Y-Achsen sind wegen ihrer hohen Belastbarkeit und der geringen Abmessungen eine geeignete Lösung. Die R-Smart-Serie setzt dabei auf zwei parallelen Profilschienen anstelle einer einzelnen. Durch die hohe Momentübertragung kann ein freitragendes Portal eingesetzt werden, wenn der Platz knapp ist. Anstelle dessen ist auch ein freitragendes XYZ-System möglich.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Conductix-Wampfler AG
Bild: Conductix-Wampfler AG
Lösungspaket für FTS und AMR

Lösungspaket für FTS und AMR

Conductix-Wampfler, ein Hersteller von Systemen für die Energie- und Datenübertragung zu beweglichen Verbrauchern, zeigt auf der diesjährigen Logimat ein umfangreiches Lösungspaket für fahrerlose Transportsysteme und autonome mobile Roboter, bestehend aus Systemen zur Batterieladung, Energiespeichern und Kommunikationslösungen inklusive einem Nothalt-System.

Bild: Faulhaber/ EduArt
Bild: Faulhaber/ EduArt
Einstieg in die mobile Robotik leicht gemacht

Einstieg in die mobile Robotik leicht gemacht

Typischerweise entlasten Roboter Menschen von monotonen Tätigkeiten. Das gilt auch für den Transport in der Produktion und Intralogistik. Hier können in zahlreichen Anwendungsfällen autonome mobile Roboter oder fahrerlose Transportsysteme zu effizienzsteigernden Helfern werden. Allerdings fehlt in vielen Unternehmen noch das Knowhow bzw. die Erfahrung im Umgang mit diesen Systemen. Eine entsprechende Roboterlernplattform erleichtert Anwendern nun den Einstieg in die Welt von AMR und FTS. Von den eingesetzten Antrieben wird in der Lernplattform ebenso wie in der realen Anwendung einiges verlangt.

Bild: Linde Material Handling GmbH
Bild: Linde Material Handling GmbH
Auf dem Weg zum autonomen Outdoor-Stapler

Auf dem Weg zum autonomen Outdoor-Stapler

Im Forschungsprojekt ‚KAnIS – Kooperative Autonome Intralogistik Systeme‘ haben die Projektpartner Linde Material Handling und die technische Hochschule Aschaffenburg Lösungen für die anspruchsvollen Einsätze autonomer Gegengewichtsstapler entwickelt, die sowohl im Innen- als auch im Außenbereich Lasten bewegen. Ein Schwerpunkt lag auf deren kooperativem Verhalten: Über ein 5G-Netz und einen Edge-Server tauschen die Fahrzeuge Informationen in Echtzeit aus und können sich gegenseitig vor Hindernissen warnen.