Anzeige
Anzeige

Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘

Automatische Roboterprogrammierung für kleine Losgrößen

Im Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘ wird eine Lösung für die automatische Programmierung von Industrierobotern entwickelt. Die neue Bahnplanungssoftware der Projektpartner CLK, Fachhochschule Münster und Institut für Steuerungstechnik der Universität Stuttgart soll die komplexe und zeitaufwendige Programmierung von Industrierobotern so vereinfachen, dass ein wirtschaftlicher Einsatz in der Kleinserienfertigung ermöglicht wird.

Für die automatische Bahnplanung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. (Bild: ISW Universität Stuttgart)

Für die automatische Bahnplanung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. (Bild: ISW Universität Stuttgart)

Um den zusätzlichen Zeitaufwand für die Programmierung in der Kleinserienfertigung zu reduzieren, befasst sich das Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘ mit der Entwicklung einer Planungssoftware, die automatisch kollisionsfreie Roboterbahnen innerhalb vorgegebener Randbedingungen plant und Abweichungen des realen Bauteils ausgleicht. Für die automatische Planung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. Zu diesem Zweck wird ein Laserscanner am Flansch des Roboters angebracht. Der Sensor tastet das Werkstück vor jeder Bahnplanung ab und nimmt eine 3D-Punktwolke der Szene auf. Für jedes neue Werkstück wird eine Bahnplanungsanforderung an den Bahnplaner gesendet. Hierbei können bestimmte Toleranzbereiche für jede programmierte Pose definiert werden. Diese Toleranzen werden durch den Bahnplaner zur Vermeidung von Kollisionen genutzt. Verschiedene Reduktionsmechanismen wie ein multiauflösendes Umgebungsmodell und eine Heuristik-basierte Schrittweitensteuerung sorgen für kurze Planungszeiten.

Erkennung und Kompensation von Abweichungen

Grundlage für die Planungssoftware ist ein 3D-Modell des zu bearbeitenden Werkstücks. Auf der Grundlage dieses Modells wird durch ein Matching-Verfahren die genaue Orientierung und Position des Werkstücks im Roboterkoordinatensystem bestimmt. Die Bahnplanungsanforderung kann so an die tatsächliche Position des Werkstücks vor dem Roboter angepasst werden. Verformungen des Werkstücks im Vergleich zum 3D-Modell werden erkannt und kompensiert. Basierend auf dem Verformungsmodell kann die Bahn entweder entsprechend angepasst oder das Werkstück bei zu großer Abweichung als Ausschuss erkannt werden. Das Punktwolkenmodell wird für die Planung der Roboterbahn in eine Voxelkarte transformiert. Damit kann die Kollisionsberechnung zuverlässig und schnell durchgeführt werden. Basierend auf der Karte wird ein kollisionsfreier Weg berechnet. In einem zweiten Schritt wird die gefundene Bahn geglättet und eine Trajektorie geplant. Mit einer vorhandenen Schnittstelle zu Kuka, ABB und ROS kann die Bahn direkt an das Leitsystem übergeben und ausgeführt werden.

Einfache Vorbereitung neuer Roboteraufgaben

Mit Hilfe der entwickelten Lösung zur kamerabasierten Bahnplanung wird der notwendige Zeitaufwand für die Planung und Vorbereitung einer Roboteraufgabe erheblich reduziert. Neben der CAD-basierten Programmierung kann die Bahn auch direkt am Werkstück vorgegeben werden. Hierzu wurde eine Lösung entwickelt, die die Bahnprogrammierung durch ein Zeigegerät direkt am physikalischen Werkstück ermöglicht. Eine manuelle Programmierung ist nicht mehr notwendig. Stattdessen wird die initiale Bearbeitungsbahn auf Basis von Kameradaten automatisch geplant und ausgeführt. Das macht den Einsatz von Industrierobotern auch bei Kleinserien und Einzelteilfertigung wirtschaftlich. Das Forschungsprojekt KaBa wird im Rahmen des Zentralen Programms Innovation Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Energie (BMWI) gefördert.

Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘
Bild: ISW Universität Stuttgart


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Im Normalfall bestehen flexible Teilezuführungen aus einem Rüttler mit Teilebunker, einer Kamera mit Bildverarbeitung und einem Roboter. Die Zuführungslösung Feedy hingegen fasst diese drei Funktionselemente in einem kompakten Gerät zusammen.‣ weiterlesen

Anzeige

Laut den Aussagen der deutschen Automobilindustrie stehen ihre Unternehmen finanziell direkt vor der Gruft. Viele von ihnen seien zumindest mit einem Bein schon drin. Deshalb gab es im September im Berliner Kanzleramt den Autogipfel mit dem Ziel, der - (auch) Corona-Pandemie bedingt - strauchelnden Vorzeigebranche Halt zu geben.‣ weiterlesen

Anzeige

Analog zum steigenden Stellenwert in der industriellen Praxis, finden sich in Unternehmen und Bildungseinrichtungen immer mehr Schulungsroboter. Und auch hier geht der Trend in Richtung MRK. Die Firma Glaub zielt mit modularen Lernstationen auf praxisnahe Aus- und Weiterbildung und bietet jetzt auch eine Cobot-Lernstation mit Robotermodellen von Universal Robots an.‣ weiterlesen

Anzeige

Moderne Produktionsanlagen, Logistikunternehmen und eine zunehmende Zahl neuer Industrien ersetzen allmählich den manuellen Betrieb durch automatisierte Systeme. Dieser Trend ist nicht überraschend, da der Einsatz von Robotern die Nachteile manueller Arbeit beseitigt und im Vergleich zu den klassischen Systemen unzählige Vorteile bietet. Auch eine Produktionseinrichtung von Ikea in der Slowakei hat jetzt beschlossen, manuelle Prozesse zu automatisieren und für die Verpackung von Möbelteilen Vision-gesteuerte Roboter einzusetzen.‣ weiterlesen

Mit seinem Roboterarm Soloassist II will das Regensburger Unternehmen AktorMed den Chirurgen in Krankenhäusern die Arbeit mit Endoskopen erleichtern. Bei minimalinvasiven Eingriffen kann die OP-Kamera nun mithilfe von Spracherkennung geführt werden. Das ist eine deutliche Verbesserung für den Operateur, allerdings stellt die dahinterliegende Software vergleichbar hohe Anforderungen an die Hardware. Zum Einsatz kommt daher ein vollwertiger Embedded-Industrial-Computer.‣ weiterlesen

Der Co-Picker von Vision Online ist ein 3D-Bildverarbeitungssystem für Bin-Picking. Das System ist kameraseitig herstellerunabhängig und kommuniziert auch roboterseitig mit allen gängigen Fabrikaten.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige