Anzeige
Anzeige
Anzeige

Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘

Automatische Roboterprogrammierung für kleine Losgrößen

Im Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘ wird eine Lösung für die automatische Programmierung von Industrierobotern entwickelt. Die neue Bahnplanungssoftware der Projektpartner CLK, Fachhochschule Münster und Institut für Steuerungstechnik der Universität Stuttgart soll die komplexe und zeitaufwendige Programmierung von Industrierobotern so vereinfachen, dass ein wirtschaftlicher Einsatz in der Kleinserienfertigung ermöglicht wird.

Für die automatische Bahnplanung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. (Bild: ISW Universität Stuttgart)

Für die automatische Bahnplanung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. (Bild: ISW Universität Stuttgart)

Um den zusätzlichen Zeitaufwand für die Programmierung in der Kleinserienfertigung zu reduzieren, befasst sich das Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘ mit der Entwicklung einer Planungssoftware, die automatisch kollisionsfreie Roboterbahnen innerhalb vorgegebener Randbedingungen plant und Abweichungen des realen Bauteils ausgleicht. Für die automatische Planung müssen die Umgebung des Roboters, einschließlich des Werkstücks, und die Robotergeometrie bekannt sein. Zu diesem Zweck wird ein Laserscanner am Flansch des Roboters angebracht. Der Sensor tastet das Werkstück vor jeder Bahnplanung ab und nimmt eine 3D-Punktwolke der Szene auf. Für jedes neue Werkstück wird eine Bahnplanungsanforderung an den Bahnplaner gesendet. Hierbei können bestimmte Toleranzbereiche für jede programmierte Pose definiert werden. Diese Toleranzen werden durch den Bahnplaner zur Vermeidung von Kollisionen genutzt. Verschiedene Reduktionsmechanismen wie ein multiauflösendes Umgebungsmodell und eine Heuristik-basierte Schrittweitensteuerung sorgen für kurze Planungszeiten.

Erkennung und Kompensation von Abweichungen

Grundlage für die Planungssoftware ist ein 3D-Modell des zu bearbeitenden Werkstücks. Auf der Grundlage dieses Modells wird durch ein Matching-Verfahren die genaue Orientierung und Position des Werkstücks im Roboterkoordinatensystem bestimmt. Die Bahnplanungsanforderung kann so an die tatsächliche Position des Werkstücks vor dem Roboter angepasst werden. Verformungen des Werkstücks im Vergleich zum 3D-Modell werden erkannt und kompensiert. Basierend auf dem Verformungsmodell kann die Bahn entweder entsprechend angepasst oder das Werkstück bei zu großer Abweichung als Ausschuss erkannt werden. Das Punktwolkenmodell wird für die Planung der Roboterbahn in eine Voxelkarte transformiert. Damit kann die Kollisionsberechnung zuverlässig und schnell durchgeführt werden. Basierend auf der Karte wird ein kollisionsfreier Weg berechnet. In einem zweiten Schritt wird die gefundene Bahn geglättet und eine Trajektorie geplant. Mit einer vorhandenen Schnittstelle zu Kuka, ABB und ROS kann die Bahn direkt an das Leitsystem übergeben und ausgeführt werden.

Einfache Vorbereitung neuer Roboteraufgaben

Mit Hilfe der entwickelten Lösung zur kamerabasierten Bahnplanung wird der notwendige Zeitaufwand für die Planung und Vorbereitung einer Roboteraufgabe erheblich reduziert. Neben der CAD-basierten Programmierung kann die Bahn auch direkt am Werkstück vorgegeben werden. Hierzu wurde eine Lösung entwickelt, die die Bahnprogrammierung durch ein Zeigegerät direkt am physikalischen Werkstück ermöglicht. Eine manuelle Programmierung ist nicht mehr notwendig. Stattdessen wird die initiale Bearbeitungsbahn auf Basis von Kameradaten automatisch geplant und ausgeführt. Das macht den Einsatz von Industrierobotern auch bei Kleinserien und Einzelteilfertigung wirtschaftlich. Das Forschungsprojekt KaBa wird im Rahmen des Zentralen Programms Innovation Mittelstand (ZIM) vom Bundesministerium für Wirtschaft und Energie (BMWI) gefördert.

Forschungsprojekt ‚Kamerabasierte Bahnplanung für Industrieroboter‘
Bild: ISW Universität Stuttgart


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Der Fischertechnik-Baukasten Robotics Hightech bietet Robotermodelle, die, mit Kamera und Sensoren ausgestattet, verschiedene Aufgaben lösen können. Eine Besonderheit sind die Omniwheels, denn mit den neuen Bauteilen können sich die Roboter in sämtliche Richtungen bewegen.  ‣ weiterlesen

Bei Zarges zeigen rund 30 Monitore Details aller Abläufe der Produktionslinien in Echtzeit an. Dadurch verbessert der Leichtmetallbauer die Auslastung seiner Fertigungsroboter. Das Unternehmen hat so ein komplettes MES installiert und gewinnt zusätzlich aus seinen Daten neue Informationen, die es für seine Business Intelligence nutzt. Am Stammsitz in Weilheim existieren unter anderem zwei Roboterlinien zum Schweißen und Stanzen. Um deren Auslastung zu verbessern, suchte das Unternehmen nach einer Möglichkeit, die Zyklus- und Taktzeit auf Dashboards darzustellen. Das Unternehmen entschied sich dafür, Peakboard einzusetzen.  ‣ weiterlesen

Anzeige

Im Werk der Firma Stela Laxhuber im niederbayerischen Massing sorgt eine Cell4_Production-Roboterzelle von Kuka für das Verschweißen von Ventilatoren für Trocknungsanlagen. Diese kommen in zahlreichen Branchen, wie der Agrarwirtschaft, der Holzwerkstoffverarbeitung, der Lebensmittel-, Futtermittel,- Zellstoff- und Papierindustrie oder der Wasserwirtschaft, zum Einsatz. ‣ weiterlesen

Anzeige

In der digitalen Pressegesprächsreihe 'Auf einen Kaffee mit…' diskutierten Experten von Kuka und Webasto über die Mobilität von Morgen. Dabei im Mittelpunkt: Die intelligente Automatisierung in der Elektromobilität. Als Praxisbeispiel diente ein vollautomatisches Werk für die Produktion von Batterie-Packs für einen europäischen Bushersteller.‣ weiterlesen

Anzeige

Die Handling-to-Welding-Roboterschweißzelle von Fronius fügt Bauteile unterschiedlicher Geometrien und Werkstoffe. Den Job erledigen dabei zwei Roboter - der Handling-Roboter bringt die Werkstücke in Position, der zweite Roboter schweißt. Unterschiedliche Konfigurationsmöglichkeiten und Softwarelösungen sorgen dafür, dass sich das System nahtlos in die Produktionsabläufe einfügt.‣ weiterlesen

Anzeige

Montratec setzt zur Visualisierung seines Monoschienen- und Shuttle-Transportsystems Montrac die von Dualis angebotene 3D-Simulationsplattform Visual Components mit spezifischer Bibliothek ein. So lässt sich eine detaillierte und realitätsgetreue Vorabsimulation erstellen, die sämtliche Optionen, Komponenten und möglichen Erweiterungen offen legt. ‣ weiterlesen