Anzeige
Anzeige

Vision-Sensor berechnet Roboterkoordinaten

Kalibrieren statt programmieren

Ein Vision-Sensor erkennt ein Objekt und der Roboter nimmt es auf. Damit dies in der Praxis funktioniert, müssen die Sensorbilder aber zuvor in Roboterkoordinaten umgerechnet werden. Aktuelle Vision-Sensoren verfügen über eine Kalibrierfunktion, mit der sich diese Umrechnung mit wenigen Mausklicks konfigurieren lässt.

Bevor der Roboter ein Teil greifen kann, müssen die koordinaten des Sensors in Roboterkoordinaten umgerechnet werden. Mit der Visor-Kalibrierfunktion kann u.a. eine Greifpunktverschiebung oder eine Freiraumprüfung vorgenommen werden. (Bild: SensoPart Industriesensorik GmbH)

Bevor der Roboter ein Teil greifen kann, müssen die koordinaten des Sensors in Roboterkoordinaten umgerechnet werden. Mit der Visor-Kalibrierfunktion kann u.a. eine Greifpunktverschiebung oder eine Freiraumprüfung vorgenommen werden. (Bild: SensoPart Industriesensorik GmbH)

Handling-Roboter und Vision-Sensoren bewegen sich in zwei verschiedenen Welten: Der Ursprung (0,0) der Sensorkoordinaten liegt meist in der oberen linken Bildecke und Längen-angaben werden in Bildpixeln ausgegeben; der Roboter hingegen benötigt alle Angaben in Millimetern – bezogen auf einen realen Ort in der Welt, z.B. seinen Fußpunkt. Die notwendige Koordinatentransformation bedeutete bisher einen erheblichen Programmieraufwand in der Robotersteuerung, zumal außer der Teileposition auch Faktoren, wie die perspektivische Bildverzerrung aufgrund eines, schrägen Sensor-Blickwinkels sowie die Kissenverzeichnung des Sensorobjektivs zu berücksichtigen waren. Mit den Visor-Vision-Sensoren lässt sich dieser Aufwand nun reduzieren. Die sonst händisch zu erstellenden Routinen sind in Form einer Kalibrierfunktion bereits im Sensor vorkonfiguriert und müssen – ähnlich dem Teach-in bei einem schaltenden Sensor – lediglich an den konkreten Einsatzfall angepasst werden. Hierzu wird eine Punktepaarliste aus Bild- und Weltkoordinaten mit mindestens sechs korrespondierenden Koordinatenpaaren gebildet. Dazu lässt man den Roboter ein Kalibrierteil an verschiedenen Positionen im Sichtfeld des Vision-Sensors ablegen und überträgt die Koordinaten aus der Robotersteuerung in das Sensor-Konfigurationsprogramm, Eingriffe in die Robotersteuerung sind nicht mehr nötig. Einmal kalibriert, übermittelt der Sensor jede Teileposition in absoluten Roboterkoordinaten, sodass der Roboter die Teile ohne weitere Umrechnung direkt greifen kann. Perspektivische Verzerrungen und Objektivverzeichnungen werden durch die Kalibrierung automatisch mitkorrigiert. Der Kalibriervorgang lässt sich mittels Schnittstellenkommandos, z.B. via Ethernet, vollständig automatisieren. Die Kalibrierung lässt sich einfach an wechselnde Teilegeometrien anpassen. So kann ein vertikaler Versatz zwischen Kalibrier- und Messebene oder eine Greifpunktkorrektur berücksichtigt werden. Auch der verfügbare Freiraum rund um das zu greifende Teil lässt sich überprüfen; übereinander oder zu eng liegende Teile werden gar nicht erst an den Roboter gemeldet.

Vision-Sensor berechnet Roboterkoordinaten
Bild: SensoPart Industriesensorik GmbH


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Das optische 3D-Messsystem qFlash-A ist für kleinere Prüfzellen in der Werksumgebung. Als eine kosteneffiziente Inspektionslösung mit hoher Verarbeitungsgeschwindigkeit bei gleichzeitig geringem Platzbedarf kombiniert der Sensor digitale Bildverarbeitungstechnik mit blauer LED-Beleuchtung in einem leichten Gerät, das sich für kompakte oder kollaborative Roboter eignet.‣ weiterlesen

Anzeige

Roboter, die sich in unbekanntem Terrain autonom fortbewegen und Hindernisse überwinden können, sind ein beliebtes Forschungsfeld. Denn die Ansätze, wie diese Aufgabe gelöst werden kann, scheinen endlos. Einen solchen Versuch wagten Studenten der ETH Zürich im vergangenen Semester und betraten mit ihrem springenden Roboter neues Terrain.‣ weiterlesen

Anzeige

Der Maschinen- und Anlagenbauer Ecoma unterstützt einen deutschen Produzenten von Gewürzen bei der Automatisierung seiner Produktions- und Verpackungsanlagen. Letztes Jahr wurde das Unternehmen mit der Entwicklung von zwölf Doppelpalettierzellen beauftragt. Dreh- und Angelpunkt der Zellen: Spezialroboter mit fünf Achsen.‣ weiterlesen

Fanuc ist als einer der großen Roboterhersteller auf allen Märkten der Welt aktiv. Auf der Automatica 2018 hat ROBOTIK UND PRODUKTION mit dem Management des japanischstämmigen Unternehmens über die führende Rolle Japans bei KI und Robotik, Chancen in China und den Stellenwert kollaborativer und mobiler Roboterlösungen gesprochen.‣ weiterlesen

Ein neues Inline-Prüfsystem ermöglicht eine zuverlässige Beurteilung von Oberflächen, die in nachfolgenden Prozessschritten geklebt, lackiert oder anderweitig behandelt werden sollen. Basis der Lösung sind ein Patent des Fraunhofer IFAM und Bildverarbeitungstechnik von Stemmer Imaging.‣ weiterlesen

Kollaborative Roboter sind einfach zu programmieren und auch in direkter Nähe zu einem Bediener sicher zu betreiben. Im Zusammenspiel mit einer Bildverarbeitung lassen sich aber auch leistungsfähige und kompakte Inline-Prüfsysteme umsetzen, die sich kostengünstig für neue Prüftypen und zukünftige Prüfaufgaben erweitern lassen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige