Entwicklung und Verwendung von generischen OPC-UA-Informationsmodellen

Entwicklung und Verwendung von generischen OPC-UA-Informationsmodellen

Schnelle Definition technologieübergreifender Schnittstellen

Die Automatisierung bietet für den Paradigmenwechsel von der Massenfertigung zu einer flexiblen variantenreichen Produktion einen wertvollen Ansatz. Allerdings birgt die Verwendung heterogener Betriebsmittel mit unterschiedlichen Kommunikationsprotokollen große Herausforderungen. So besteht eine Anforderung darin, den sicheren, programmiersprachen- sowie hersteller- und betriebssystemunabhängigen Datenaustausch zu garantieren.

Abung 1: Übergang der klassischen Automatisierungspyramide in das RAMI-4.0-Modell (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

Übergang der klassischen Automatisierungspyramide in das RAMI-4.0-Modell (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

In diesem Zusammenhang wird OPC UA als potentielle Lösung hoch gehandelt, doch auch der Aufwand für eine individuelle Lösungen ist groß. Er lässt sich nur durch eine Standardisierung der semantischen Beschreibung reduzieren. Aus diesem Grund verfolgt das WZL der RWTH Aachen die Entwicklung allgemeingültiger, generischer Informationsmodelle für die Produktionstechnik. Seit Anfang der neunziger Jahre nimmt der Anteil PC- und softwarebasierter Automatisierungssysteme in der industriellen Produktion stetig zu. Im Laufe der Jahre entwickelten viele Hersteller eigene Bussysteme, Kommunikationsprotokolle und Schnittstellen, mit deren Hilfe die Steuerungssysteme in der Produktionstechnik miteinander kommunizieren. Die Fülle an unterschiedlichen Kommunikationsformen erschwert heute die Automatisierung einer modernen Prozesslandschaft, in der u.a. Roboter, Werkzeugmaschinen und Fördersysteme unterschiedlicher Anbieter und mit verschiedenen Steuerungssystemen zum Einsatz kommen. Reichte es bisher – aufgrund des deutlich geringeren Anteiles automatisierter Prozesse – aus, die Kommunikation einzelner Prozessschritte zwischen den daran unmittelbar beteiligten Produktionselementen (z.B. Roboter und Zuführeinrichtungen) zu implementieren, so stößt diese Lösung in einer immer stärker automatisierten und vernetzten Prozesslandschaft an ihre Grenzen. Die Steuerung in einzelnen Subsystemen ist schlicht zu aufwändig, verhindert das Ausschöpfen von Synergieeffekten und kann somit den Anforderungen an die moderne Produktion nicht mehr gerecht werden. Ein zunehmender Automatisierungsgrad bedarf daher einer prozessüberlagerten Kommunikationsplattform, auf der die einzelnen Produktionselemente über mehrere Ebenen hinweg ihre Dienste und Funktionen anbieten können und somit in einem Gesamtkonzept eingebettet werden. Dadurch ergibt sich eine größere Flexibilität hinsichtlich Anlagen- und Prozessrekonfiguration.

Abung 2: Auslesen und Ansteuern des Roboters mittels Modbus TCP bzw. Socket-Verbindung (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

Auslesen und Ansteuern des Roboters mittels Modbus TCP bzw. Socket-Verbindung (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

OPC UA als Enabler für das Internet of Production

Der Kommunikationsstandard OPC UA bietet einen sicheren und zuverlässigen vertikalen Informationsaustausch in heterogenen Systemlandschaften, d.h. unabhängig von Hersteller, Programmiersprache und Betriebssystem. Dazu wird die reale Prozessumgebung durch objektorientierte Komponenten im sogenannten Address Space Model modelliert. In diesem Modell werden sämtliche Prozessdaten, Funktionen, Assets und Dienste der einzelnen Komponenten abgebildet. Durch die objektorientierte Abbildung entsteht ein Informationsmodell der realen Prozessumgebung, das bei Bedarf verändert, ergänzt und angepasst werden kann. Auf dieser Basis wird eine OPC-UA-Client/Server-Struktur aufgebaut, die die Steuerung der modellierten Prozesslandschaft über eine übergeordnete und einheitliche Kommunikationsebene ermöglicht. Der Address Space enthält dabei alle Informationen, die vom OPC UA Server einem OPC UA Client bereitgestellt werden und wird als ein Netz aus Knoten dargestellt. Je nach Knotentyp werden individuelle Attribute beschrieben, die einzelnen Knoten sind über eine Hierarchie miteinander verbunden.

Abung 3: Ausschnitt des Address Space des verwendeten Industrieroboters (UR5) (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

Ausschnitt des Address Space des verwendeten Industrieroboters (UR5) (Bild: Lehrstuhl für Werkzeugmaschinen am WZL der RWTH Achen)

Aufwand reduzieren durch generische Informationsmodelle

Der Address Space muss für jede Anwendung neu entwickelt und implementiert werden. Die Absicht der am WZL verfolgten Forschung ist die Erstellung von generischen Informationsmodellen, sodass der initiale Aufwand bei der Implementierung von OPC-UA-Client/Server-Strukturen reduziert werden kann. Durch die Verwendung von generischen Modellen können Automatisierungskomponenten, die im Verbund agieren, binnen sehr kurzer Zeit ausgetauscht oder ersetzt werden. Wenn durch die Einheiten über generische Informationsmodelle nach außen identische Dienste angeboten werden, ist auch keine Anpassung auf der überlagerten Steuerungsebene notwendig. Ziel zukünftiger Forschungsarbeit am WZL ist die Definition solcher Modelle und die dazu notwendige Funktionskapselung von Automatisierungskomponenten. Dabei leistet das Vorgehen einen wichtigen Beitrag zu Plug&Produce und dem industriellen IoT bzw. Internet of Production.

Seiten: 1 2Auf einer Seite lesen

WZLforum gGmbH
www.wzl.rwth-aachen.de

Das könnte Sie auch Interessieren

Bild: Conductix-Wampfler AG
Bild: Conductix-Wampfler AG
Lösungspaket für FTS und AMR

Lösungspaket für FTS und AMR

Conductix-Wampfler, ein Hersteller von Systemen für die Energie- und Datenübertragung zu beweglichen Verbrauchern, zeigt auf der diesjährigen Logimat ein umfangreiches Lösungspaket für fahrerlose Transportsysteme und autonome mobile Roboter, bestehend aus Systemen zur Batterieladung, Energiespeichern und Kommunikationslösungen inklusive einem Nothalt-System.

Bild: Faulhaber/ EduArt
Bild: Faulhaber/ EduArt
Einstieg in die mobile Robotik leicht gemacht

Einstieg in die mobile Robotik leicht gemacht

Typischerweise entlasten Roboter Menschen von monotonen Tätigkeiten. Das gilt auch für den Transport in der Produktion und Intralogistik. Hier können in zahlreichen Anwendungsfällen autonome mobile Roboter oder fahrerlose Transportsysteme zu effizienzsteigernden Helfern werden. Allerdings fehlt in vielen Unternehmen noch das Knowhow bzw. die Erfahrung im Umgang mit diesen Systemen. Eine entsprechende Roboterlernplattform erleichtert Anwendern nun den Einstieg in die Welt von AMR und FTS. Von den eingesetzten Antrieben wird in der Lernplattform ebenso wie in der realen Anwendung einiges verlangt.

Bild: Linde Material Handling GmbH
Bild: Linde Material Handling GmbH
Auf dem Weg zum autonomen Outdoor-Stapler

Auf dem Weg zum autonomen Outdoor-Stapler

Im Forschungsprojekt ‚KAnIS – Kooperative Autonome Intralogistik Systeme‘ haben die Projektpartner Linde Material Handling und die technische Hochschule Aschaffenburg Lösungen für die anspruchsvollen Einsätze autonomer Gegengewichtsstapler entwickelt, die sowohl im Innen- als auch im Außenbereich Lasten bewegen. Ein Schwerpunkt lag auf deren kooperativem Verhalten: Über ein 5G-Netz und einen Edge-Server tauschen die Fahrzeuge Informationen in Echtzeit aus und können sich gegenseitig vor Hindernissen warnen.