Virtuelles Testumfeld für Marsmissionen

Virtuelles Testumfeld für Marsmissionen

Roboter erobern fremde Planeten

Wissenschaftlerinnen und Wissenschaftler der Universität Bremen haben 40km2 Marslandschaft in der virtuellen
Realität rekonstruiert. Das Testumfeld ermöglicht die realistische Simulation von Robotermissionen und Funknetzen unter den Bedingungen des Planeten. Eine besondere Herausforderung bestand darin, Schnittstellen zu den speziellen Softwaresystemen unterschiedlicher Roboter zu schaffen und diese als virtuellen Schwarm einzusetzen.

Weil das Terrain in den Canyons auf dem Mars sehr vielfältig ist, werden für die Erkundung auch Roboter mit unterschiedlichen Stärken benötigt - einige können z.B. klettern, andere fliegen oder Nutzlasten transportieren. (Bild: Universität Bremen)

Weil das Terrain in den Canyons auf dem Mars sehr vielfältig ist, werden für die Erkundung auch Roboter mit unterschiedlichen Stärken benötigt – einige können z.B. klettern, andere fliegen oder Nutzlasten transportieren. (Bild: Universität Bremen)

Die umfassende Erforschung des Mars zählt zu den wichtigsten Zielen der internationalen Raumfahrt in den kommenden Jahrzehnten. Um Menschen dabei nicht in Gefahr zu bringen, sollen Roboter eine Vielzahl von Aufgaben übernehmen. Damit deren Einsatz in der fremden Umgebung getestet und das Zusammenspiel von weitgehend autonomen Roboterschwärmen realistisch simuliert werden kann, haben Wissenschaftlerinnen und Wissenschaftler des Technologie-Zentrums Informatik und Informationstechnik (TZI) der Universität Bremen unter Leitung von Professor Gabriel Zachmann ein virtuelles Testumfeld entwickelt. Rund 40km2 des Canyon-Systems Valles Marineris auf dem Mars stehen für die Vorbereitung künftiger Missionen in der virtuellen Realität zur Verfügung.

Suche nach Rohstoffen und außerirdischem Leben

Im Rahmen des Projekts VaMEx-VTB (Valles Marineris Explorer – Virtual TestBed) hat die Arbeitsgruppe um Professor Zachmann die Mariner-Täler auf der Basis von Scans der NASA nachgebildet. „Die Region wurde ausgewählt, weil dort Rohstoffe vermutet werden, die für spätere bemannte Missionen und menschliche Siedlungen auf dem Planeten nützlich wären“, sagt Professor Zachmann. Darüber hinaus bestehe die Möglichkeit, Hinweise auf extraterrestrisches Leben zu finden, denn die Bedingungen für die Entstehung von Mikroorganismen könnten zumindest in der Vergangenheit – als der Mars klimatisch noch weniger lebensfeindlich war – gut gewesen sein. Weil das Terrain in den Canyons sehr vielfältig ist, werden für die Erkundung auch Roboter mit unterschiedlichen Stärken benötigt – einige können z.B. klettern, andere fliegen oder Nutzlasten transportieren. Zusätzlich muss ein Netzwerk aus kleinen, funkbasierten Leuchttürmen (Beacons) errichtet werden, damit die Roboter jederzeit ihre Position bestimmen können.

Hohe Anforderungen an die Software

Die TZI-Software ermöglicht es, das komplexe Zusammenspiel zwischen den Robotern unter Berücksichtigung aller Besonderheiten des Planeten – z.B. Schwerkraft, Bodenbeschaffenheit und extreme Temperaturen – zu simulieren. „Dafür mussten zunächst enorme Datenmengen verarbeitet werden, damit eine realistische, dreidimensionale Darstellung der Landschaft entsteht“, so Zachmann. Eine Herausforderung lag auch in der Anbindung der unterschiedlichen Roboter-Softwaresysteme, damit der Austausch von Informationen möglich wird. Das System hat sich bereits bei den ersten Tests bewährt. Die Forschenden haben bemerkt, dass Roboter auf dem Mars andere Algorithmen benötigen als auf der Erde, um ihre Position bestimmen zu können. Das liegt unter anderem an den sehr eintönigen Farben des Geländes, die es schwierig machen, landschaftliche Wiedererkennungsmerkmale zu identifizieren. Genau in derartigen Erkenntnissen liegt der größte Nutzen der Simulation: Fehler können behoben werden, bevor die Roboter eines Tages ihre achtmonatige Reise zum Mars antreten. Die Chance, dass vor Ort dann alles funktioniert wie geplant, steigt somit erheblich.

Seiten: 1 2Auf einer Seite lesen

cgvr.informatik.uni-bremen.de/research/vamex-vtb/

Das könnte Sie auch Interessieren

Bild: KUKA AG
Bild: KUKA AG
Cobot-Einsatz in der Qualitätssicherung

Cobot-Einsatz in der Qualitätssicherung

Zur Qualitätssicherung des neuen Mahlwerks für die neue Kaffeemarke Ligre hinsichtlich Langlebigkeit und Einhaltung des voreingestellten Kaffeegewichts setzten die Entwicklungstechniker von Gronbach in einem Testaufbau auf die Unterstützung durch den Cobot LBR iisy von Kuka.

Bild: Fraunhofer-Institut IML
Bild: Fraunhofer-Institut IML
Belohnung als 
Anreiz zum Lernen

Belohnung als Anreiz zum Lernen

KI-Entwickler Julian Eßer trainiert Roboter, sich intelligent zu verhalten. Denn das Entscheidende ist, dass die Maschinen nicht nur bei kalkulierbaren Ereignissen richtig handeln. Vor allem müssen sie auch in unvorhergesehen Situationen das Richtige tun. Dafür testet er als Mitglied des AI Grids, einer Initiative des Bundesforschungsministeriums, die vielversprechende Talente in künstlicher Intelligenz in Deutschland fördert, am Fraunhofer IML Hunderte Roboter in virtuellen Welten. Ziel ist, dass die Maschinen üben und lernen, mit Störungen und Varianten ähnlicher Situationen umzugehen – und dann selbst Varianten anbieten. Dafür kommt eine Art Belohnungssystem für Roboter zum Einsatz: So lernen sie leichter aus Fehlern und wählen den schnellsten und effektivsten Weg zum Ziel.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
inVISION Day Metrology 2024

inVISION Day Metrology 2024

Am 16. Mai 2024 findet zum zweiten Mal der inVISION Day Metrology – Digital Conference for Metrology statt. An dem Tag werden in den vier Sessions 3D-Scanner, Inline Metrology, Surface Inspection sowie CT & X-Ray aktuelle Lösungen und Produkte in zahlreichen 20-minütigen Vorträgen präsentiert.