Anzeige

Virtueller Cobot-Simulator veranschaulicht Simulationswerkzeuge

Bereit für Industrie 4.0

Im Zusammenhang mit Industrie 4.0 wird die Produktentwicklung zu einer Reise mit großen Herausforderungen. Mithilfe einer entsprechenden Entwicklungsplattform lassen sich alle für ein solches Projekt erforderlichen Schritte in einer einheitlichen Umgebung ausführen. Zur Veranschaulichung, wie neue Designverfahren und Simulationswerkzeuge erfolgreich eingesetzt werden können, dient ein virtueller Demonstrator, basierend auf einer Cobot-Anwendung.

Der virtuelle Cobot-Simulator von Altair hilft Anwendern, Co-Simulationen durchzuführen oder mit reduzierten Modellen zu arbeiten, um die Interaktion zwischen elektromagnetischen Systemen, wie z.B. Motoren, Aktuatoren und Sensoren, zu betrachten. (Bild: Altair Engineering GmbH)

Der virtuelle Cobot-Simulator von Altair hilft Anwendern, Co-Simulationen durchzuführen oder mit reduzierten Modellen zu arbeiten, um die Interaktion zwischen elektromagnetischen Systemen, wie z.B. Motoren, Aktuatoren und Sensoren, zu betrachten. (Bild: Altair Engineering GmbH)

Bei der Entwicklung komplexer Produkte ist die Betrachtung des gesamten mechatronischen Systems wichtig – einschließlich Struktur, Sensoren, Aktuatoren mit dynamischer Kontrolle und elektromagnetischer Kompatibilität. Um diese Entwicklungsschritte zu bearbeiten, bietet Altair eine Reihe an Werkzeugen. SolidThinking Activate ermöglicht es z.B., multidisziplinäre Systeme abzubilden, diese zu simulieren und zu verbessern. Durch eine modellbasierende Entwicklung kann sichergestellt werden, dass allen Designanforderungen entsprochen wird und gleichzeitig Probleme auf Systemebene bereits früh im Designprozess identifiziert werden. Bei der Suche nach der besten Maschinenkonfiguration eines Cobots innerhalb bestehender Systembedingungen unterstützt das Werkzeug Flux Anwender z.B. bei der Auslegung elektrischer Aktuatoren. Mit dem Tool für die niederfrequente EM-Simulation kann außerdem die Komplexität der elektromagnetischen und thermischen Phänomene erfasst und damit das Produktverhalten präzise vorhergesagt werden. Darüber hinaus lassen sich die Geräuschbildung reduzieren und Aktuatoren kompakter gestalten. Gekoppelt mit AcuSolve, einem CFD Solver, ermöglicht es zudem multidisziplinäre Untersuchungen.

Co-Simulation für den Cobot

Ein Cobot muss auch physische Interaktionen mit Menschen in der gemeinsamen Arbeitsumgebung berücksichtigen, was die Komplexität der Bewegungsbefehle weiter erhöht. Von der Untersuchung lokaler Auswirkungen (mechanische oder elektrische Lasten, thermische Effekte) bis zum Design komplexer Antriebe ist dabei die Anbindung von Flux an Activate hilfreich. Anwender können Co-Simulationen durchführen oder mit reduzierten Modellen arbeiten, um die Interaktion zwischen elektromagnetischen Systemen, wie z.B. Motoren, Aktuatoren und Sensoren, zu betrachten. Die Co-Simulation berücksichtigt dabei u.a. Phänomene wie Sättigung, Wirbelströme, Bewegung oder Steuerungskreise. Von einem industriellen Cobot wird eine hohe Arbeitsplatzsicherheit erwartet, die u.a. mit leichteren Strukturen erreicht werden kann, da sie die nötige Effizienz und Genauigkeit eines Cobots unterstützen. Leichtere Bauteile und geringere Trägheiten verbessern die Armleistung und erhöhen die Lebensdauer des Systems. Strukturoptimierungen können z. B. mit dem FE-Solver und Werkzeug OptiStruct oder SolidThinking Inspire durchgeführt werden. Auch Bewegungsanalysen lassen sich integrieren und mit anderen Disziplinen wie Topologie-, Topographie- oder Gauge-Optimierungen koppeln. Eine hohe Funktionalität, ein leichtgewichtiges Design, Schraubenvorspannungen oder Herstellbarkeit sind nur einige der möglichen Ziele dieses Entwicklungsschrittes.

Virtueller Cobot-Simulator veranschaulicht Simulationswerkzeuge
Bild: Altair Engineering GmbH


Empfehlungen der Redaktion

Das könnte Sie auch interessieren

Das Sicherheitssystem sBot Speed – UR von Sick soll für Sicherheit und Flexibilität in UR-Roboteranwendungen sorgen, indem es die Funktionen eines Sicherheits-Laserscanners mit denen der Sicherheitssteuerung Flexi Soft und des UR-Roboters kombiniert. ‣ weiterlesen

Anzeige

Fanuc hat auf der iRex in Tokio seinen ersten kollaborativen Leichtbauroboter vorgestellt. Der CRX-10iA ist um einiges leichter als die übrigen Modelle des Herstellers und lässt sich z.B. als Handling-Einheit auf fahrerlosen Transportsystemen einsetzen. Der Roboter ist in zwei Varianten erhältlich: als Kurzarmversion mit einer Reichweite von 1,2m und als Langarmversion, deren Arm bis 1,4m weit reicht.  ‣ weiterlesen

Anzeige

Die selbstfahrende Plattform ER-Ability von Enabled Robotics wurde speziell für kollaborative Roboter entwickelt. Sie verfügt über eine übersichtliche Benutzeroberfläche, die die einfache Einrichtung und Anpassung der jeweiligen Anwendung ermöglichen soll.‣ weiterlesen

Anzeige

Die kollaborativen Roboter der HCR-Serie des koreanischen Herstellers Hanwha im deutschen Vertrieb bei Freise Automation sind in drei Versionen erhältlich. Die Modelle HCR-3, HCR-5 und  HCR-12 unterscheiden sich vor allem anhand ihrer Tragkraft. ‣ weiterlesen

Minitec hat eine vollautomatische Abfüllanlage geplant und umgesetzt, die zwei verschiedene Flüssigkeiten gleichzeitig in einem Arbeitsgang dosiert. Die Abfüllanlage besteht aus einem Doppelgurtförderer mit Aufnahmenocken für zwei verschiedene Gefäßgrößen. Nach der manuellen Aufgabe der Behältnisse wird an der ersten Abfüllstation die erste Flüssigkeit eingefüllt. Die Dosierung erfolgt zeitgesteuert. Anschließend wird ein Deckel mittels Pick&Place-Einheit aus einem Bandbunker übernommen.  ‣ weiterlesen

Reiku war eines der ersten Unternehmen, die Roboterkomponenten aus recyceltem Kunststoff sowie nachwachsenden Rohstoffen wie Rizinusöl herstellen. Zur SPS in Nürnberg hat Reiku sein Produktprogramm um die Kabelschutz-Wellrohre Parab aus 100 Prozent Polyamid-12-Regenerat erweitert.  ‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige