Gedächtnis für mobile Roboter

Dynamische Karten

Das Auto der Zukunft fährt autonom, vermeidet Gefahren und sucht sich den freien Parkplatz wie von selbst: Was momentan noch visionär klingt, haben Wissenschaftlerinnen und Wissenschaftler längst als Ziel definiert. Am Institut für Kartographie und Geoinformatik werden dynamische Karten entwickelt, um die Realität zu erfassen und Fahrzeugen ein intelligentes Verhalten zu ermöglichen.

Testgebiet in Badstedt. Oben die vom Fahrzeug zurückgelegten Trajektorien, unten die dabei entstandene Punktewolke mit über 1Mrd. Punkten. (Bild: Leibniz Universität Hannover)

Bild: Leibniz Universität Hannover

Autonome Transportsysteme in der Logistik, Landwirtschaftsroboter, selbstfahrende Automobile, fahrende und fliegende (Drohnen-)Liefersysteme sowie autonome Staubsauger und Rasenmäher zeugen von einer Entwicklung hin zu einer Welt, in der sich Roboter frei bewegen, ihren Aufträgen nachgehen und dabei mit Menschen und Objekten ihrer Umwelt interagieren. Mobile Roboter treiben diesen Wandel an, denn Mobilität benötigt Sensoren, Aktoren und Intelligenz. Da mobile Roboter in ihre Umgebung eingebettet sind, wird die Planung eines intelligenten Verhaltens erleichtert, wenn ein räumliches Modell der Umgebung vorliegt. Herkömmliche Karten sind solche Umgebungsmodelle. Beschränkt auf eine ausgewählte Thematik dokumentieren sie den Ist-Zustand der Welt. Sie werden mittels Vermessung erfasst, aufbereitet, veröffentlicht und schließlich benutzt. Aufgrund der aufwendigen Erstellung ist ihre Aktualisierung leider nur in großen Zeitabständen zu leisten, weshalb sie meist veraltet sind. Ziel aktueller Entwicklungen sind deshalb dynamische Karten, die ein zeitnahes Abbild der Realität liefern. Das ist nur möglich, wenn die Erfassung viel häufiger als bisher erfolgt. Hierfür muss sie wesentlich preisgünstiger werden, was sich dadurch erreichen lässt, dass die Nutzer der Karte zugleich ihre Erfasser sind. Die individuelle Selbsterfassung dynamischer Karten reicht jedoch nicht aus, denn sie würde bedeuten, dass Regionen, die noch nie besucht wurden, nicht kartiert sind. Der zweite wesentliche Aspekt ist daher die Kollaboration. Alle Roboter tauschen dabei ihr Wissen über die Welt aus, sodass ein kollektives Gedächtnis entsteht, auch als Crowd-Sensing bezeichnet. In der Forschung gelang kürzlich die Einwerbung des Graduiertenkollegs i.c.sens – Integrität und Kollaboration in dynamischen Sensornetzwerken. Nachfolgend sind drei Beispiele aktueller Forschungsarbeiten skizziert.

Autonom fahren aufgrund hochgenauer Karten

Die heute verwendeten Karten für Fahrzeugnavigationssysteme sind für zukünftige, automatisierte und autonome Fahrzeuge nicht ausreichend. Für diese wird eine hochaufgelöste, fahrspurgenaue Karte benötigt, die die genaue Planung der Fahrstrecke (Solltrajektorie) erlaubt, sowie eine Merkmalskarte, die Objekte enthält, die eine hochgenaue und zuverlässige Eigenlokalisierung ermöglichen. Um diese Karten aktuell zu halten, sind Daten der Nutzer erforderlich. Hierzu verfügen zukünftige Fahrzeuge über Bild-, Radar-, Laserscanning- und Ultraschallsensoren, deren Messungen an zentrale Server geschickt werden. Dort werden sämtliche Messwerte unter Berücksichtigung ihrer Fehler zu einer Gesamtkarte fusioniert. Ein Experiment hierzu wurde in Hannover Badenstedt durchgeführt. Über einen längeren Zeitraum hinweg wurden Teile des Gebiets mit einem Mobile-Mapping-Fahrzeug befahren, das über Laserscanning-Sensoren verfügt. Dadurch sind 150 einzelne Scanstreifen entstanden, die insgesamt mehr als eine Milliarde 3D-Punkte enthalten. Während die Einzelmessungen relativ zum Fahrzeug sehr genau sind (etwa 1cm), ist die Position des Fahrzeugs selbst relativ ungenau (einige dm). Die Fusion hat die Aufgabe, alle individuellen Scanstreifen zu einer konsistenten, globalen Karte zu verrechnen. Insgesamt wurden etwa eine Milliarde Beobachtungen verwendet, um 278.000 Unbekannte zu berechnen. Eine Besonderheit dabei ist die Organisation des Lösungsalgorithmus, der als MapReduce (ein Big-Data-Standardver-fahren) ausgeführt ist. Dadurch skaliert der Algorithmus linear in der Größe der Szene und lässt sich auf beliebig viele Rechner verteilen. Auch wenn die Daten normaler Fahrzeuge nicht die Qualität der Mobile-Mapping-Daten aufweisen, führt dieses Experiment doch zu zwei wesentlichen Erkenntnissen. Erstens, dass die Ausgleichung beliebig großer Gebiete möglich ist, und zweitens, dass die schiere Redundanz der Messungen es erlaubt, Karten in einer nie da gewesenen Dichte und Genauigkeit zu erstellen.

Gefahren vermeiden mit kollektiver Erfahrung

Neben der Lokalisierung und Routenplanung fallen dem Fahrzeug während des autonomen Fahrens noch weitere Aufgaben zu, die für einen normalen Fahrer selbstverständlich sind. Als Mensch passen wir unser Fahrverhalten der Umgebung an. So fahren wir in Straßen, in denen mit einem hohen Fußgänger- und Fahrradfahreraufkommen zu rechnen ist, weitaus vorsichtiger als auf großen Umgehungsstraßen. Wir können auch die Gefahr einschätzen, dass Fußgänger unsere Fahrbahn kreuzen, um die Straßenseite zu wechseln. All diese für uns intuitiven Gefahreneinschätzungen beruhen auf Erfahrungswerten. Ein Ziel der Forschung ist es, solche Erfahrungswerte autonomen Fahrzeugen in Form von Gefahrenkarten zur Verfügung zu stellen. Die Detektion von Fußgängern und Fahrradfahrern ist ein wichtiger Bestandteil autonom fahrender Fahrzeuge. Verschiedene Sensoren, wie Kameras oder Laserscanner, erfassen die Umgebung, detektieren sich bewegende Objekte und bestimmen deren Bewegungsrichtung. Bisher wurden die so gewonnenen Daten nur direkt vom jeweiligen Fahrzeug verwendet, um Unfälle zu verhindern. Jedoch lässt sich auch hier der Crowd-Sensing-Ansatz verwenden, um kollektiv eine Gefahrenkarte zu erstellen, die als Vorinformation allen Teilnehmern zur Verfügung steht. Im konkreten Fall wurden Daten mehrerer Messfahrten des Mobile-Mapping-Systems verwendet. Die Unterscheidung der Fußgänger und Fahrradfahrer von anderen Objekten erfolgt durch ein Klassifikationsverfahren, das zuvor mit Beispielen trainiert wurde. Alle detektierten Fußgänger und Fahrradfahrer werden anschließend in einer Karte aggregiert und jeweils entsprechend ihrer Distanz zur Straße gewichtet – je näher, desto gefährlicher. Treten in bestimmten Gebieten viele Fußgänger und Fahrradfahrer auf, so ist an dieser Stelle der Wert der Gefahrenkarte besonders hoch und autonome Fahrzeuge können an diesen Orten ihr Fahrverhalten entsprechend anpassen.

Detektierte Fu?g?nger und Fahrradfahrer (linkes , rot) werden in eine Gefahrenkarte eingetragen (rechtes , Hintergrundkarte: Google Earth). Die roten Bereiche in der Karte zeigen Orte mit einem besonders hohen Gefahrenpotenzial an. (Bilder: Leibniz Universit?t Hannover)

Detektierte Fußgänger und Fahrradfahrer (oberes Bild, rot) werden in eine Gefahrenkarte eingetragen (unteres Bild, Hintergrundkarte: Google Earth). Die roten Bereiche in der Karte zeigen Orte mit einem besonders hohen Gefahrenpotenzial an. (Bild: Leibniz Universität Hannover)

Bild: Leibniz Universität Hannover

Schneller zum freien Parkplatz

Auch bei der Parkplatzsuche kann Crowd-Sensing hilfreich sein. In vielen Städten herrscht regelmäßig Parkplatznot. Autofahrer finden keinen Parkplatz an ihrem Ziel und gehen auf die Suche nach einer Parklücke in der Umgebung. Ein Ansatz zur Reduktion dieses Parkplatzsuchverkehrs sind dynamische Parkplatzkarten. Solche Karten beinhalten einerseits Informationen, an welchen Stellen es im Straßennetz erlaubt ist zu parken und andererseits eine Schätzung der Verfügbarkeit von freien Parkplätzen. Während sich die Parkerlaubnis nur selten (z.B. durch Bauarbeiten) ändert und damit eine geringe Dynamik aufweist, ist die aktuelle Parkplatzverfügbarkeit eine hochdynamische Information mit Änderungen im Minutentakt. Zukünftig könnten diese dynamischen Parkplatzkarten in Navigationssysteme integriert werden. Aktuelle Änderungen der Karte werden dabei über das Mobilfunknetz übertragen. Ähnlich wie bei Informationen zur aktuellen Verkehrslage kann das Navigationssystem dem Fahrer dann die Auslastung von Parkstreifen anzeigen und eine Route vorschlagen, auf der eine hohe Chance auf einen freien Parkplatz besteht. Für die Erfassung der aktuellen Parkplatzsituation existieren verschiedene Lösungen: statische Sensoren, Smartphoneanwendungen und – als derzeit vielversprechendste Lösung – die Fahrzeugsensorik. Bei Letzterer erfassen moderne, handelsübliche Fahrzeuge die Parkplatzbelegung am Straßenrand während der Fahrt mittels Ultraschallsensoren oder Kameras. Die Positionen der detektierten Parklücken oder parkenden Autos werden an einen Backendserver übertragen, dort aggregiert und anschließend an andere Fahrzeuge weitergegeben. Die Forschung beschäftigt sich nun damit, wie sich dynamische Parkplatzkarten aus den so gewonnenen Sensordaten mithilfe von Verfahren des maschinellen Lernens generieren lassen. Ein Schwerpunkt ist dabei die Vorhersage der Parkplatzverfügbarkeit in naher Zukunft anhand von aktuellen und historischen Messwerten sowie weiteren Einflussfaktoren wie der Tageszeit oder benachbarten Gebäuden.

Dynamische Karten
Testgebiet in Badstedt. Oben die vom Fahrzeug zurückgelegten Trajektorien, unten die dabei entstandene Punktewolke mit über 1Mrd. Punkten. (Bild: Leibniz Universität Hannover)


Das könnte Sie auch interessieren

Yaskawa hat den Erweiterungsbau seines Robotikzentrums am Standort Allershausen bei München eingeweiht. Im Rahmen einer Eröffnungsfeier mit Kunden und Partnern des Unternehmens sagte Yaskawa-Europa-President Manfred Stern: „Wir sehen uns immer stärker als europäischer Player der Robotik.“

Anzeige

Einen Gegenstand entgegennehmen oder ihn einer anderen Person reichen: Für Menschen gehört das zu den natürlichsten Handlungen. Doch für Roboter ist es eine schwierige Angelegenheit.

Anzeige

Ocado Technology, die Forschungsabteilung des großen Online-Supermarktes Ocado, hat ein neues Robotersystem entwickelt, das eine große Anzahl der 50.000 verschiedenen Artikel auf der Website des Supermarktes greifen kann. Es verwendet ein proprietäres Computer-Vision-System, das von der Forschergruppe konzipiert wurde, um Greifpunkte für einen bestimmten Gegenstand zu berechnen, ohne dass ein 3D-Modell des zu entnehmenden Objekts benötigt wird.

Anzeige

Vor kurzem fand das Richtfest für das neue automatische Kleinteilelager von Eisele Pneumatics in Waiblingen bei Stuttgart statt. Das 1939 gegründete Familienunternehmen entwickelt, produziert und vertreibt als Anbieter von Verbindungslösungen mit rund 160 Mitarbeitern Anschlüsse aus Ganzmetall, darunter Steckanschlüsse, Schnellschlusskupplungen und Schlauchverschraubungen. Das neue Kleinteilelager soll die schnelle Verteilung der Waren sicherstellen.

In der achten Episode der YouTube-Interviewreihe Robots in Depth spricht Ian Bernstein, Gründer verschiedener Robotikfirmen wie Sphero, im Interview mit Robotikexperte Per Sjöborg über seine Erfahrungen beim Aufbau eines weltweiten Vertriebsnetzes sowie über die Herausforderungen der Software- und Hardware-Entwicklung.

Das von einem Forscherteam des Robotics Innovation Center am DFKI und der Universität Bremen verfasste wissenschaftliche Paper ‚Intrinsic interactive reinforcement learning – Using error-related potentials for real world human-robot interaction‘ beschreibt ein Verfahren des Maschinellen Lernens, bei dem ein Roboter aus dem eigenen Fehlverhalten in der gestengesteuerten Interaktion mit dem Menschen lernt.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige